Shape as Memory Storage
نویسنده
چکیده
Let us see how this contrasts with the standard foundations for geometry that have existed for almost three thousand years. In the standard foundations, a geometric object consists of those properties of a figure that do not change under a set of actions. These properties are called the invariants of the actions. Geometry began with the study of invariance, in the form of Euclid’s concern with congruence, which is really a concern with invariance (properties that do not change). And modern physics is based on invariance. For example, Einstein’s principle of relativity states that physics is the study of those properties that are invariant (unchanged) under transformations between observers. Quantum mechanics studies the invariants of measurement operators. My argument is that the problem with invariants is that they are memoryless. That is, if a property is invariant (unchanged) under an action, then one cannot infer from the property that the action has taken place. Thus I argue: Invariants cannot act as memory stores. In consequence, I conclude that geometry, from Euclid to Einstein has been concerned with memorylessness. In fact, since standard geometry tries to maximize the discovery of invariants, it is essentially trying to maximize memorylessness. My argument is that these foundations to geometry are inappropriate to the computational age; e.g., people want computers that have greater memory storage, not less. As a consequence, I embarked on a 30-year project to build up an entirely new system for geometry – a system that was recently completed. Rather than basing geometry on the maximization of memorylessness (the aim from Euclid to Einstein), I base geometry on the maximization of memory storage. The result is a system that is profoundly different, both on a conceptual level and on a detailed mathematical level. The conceptual structure
منابع مشابه
An experimental investigation on the energy storage in a shape-memory-polymer system
In this paper, the effect of thermomechanical loading on the behavior of deflection-based harvested energies from a shape memory polymer system is experimentally investigated. Samples are created with honeycomb cells from poly-lactic acid using additive manufacturing techniques. The shape memory effect in shape recovery and force recovery paths are studied under thermomechanical tests in bendin...
متن کاملAdaptive Tunable Vibration Absorber using Shape Memory Alloy
This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...
متن کاملApplication of Shape Memory Alloys in Seismic Isolation: A Review
In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re...
متن کاملSEISMIC OPTIMIZATION OF STEEL SHEAR WALL USING SHAPE MEMORY ALLOY
Nowadays, steel shear walls are used as efficient lateral-load-resistant systems due to their high lateral stiffness and carrying capacity. In this paper, the effect of substituting a shape memory alloy (SMA) material is investigated instead of using conventional steel in the shear wall. A numerical study is conducted using finite element method (FEM) by OpenSees software. For this purpose, at ...
متن کاملExperimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals
Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004